Manual

K 100 Cl₂, SCl₂, ClO₂, O₂, O₃, H₂O₂
K 100 W Cl₂, SCl₂, ClO₂, O₂, O₃, H₂O₂

Measuring and control instruments for potentiostatic measurements of Chlorine, Total Chlorine, Chlorine dioxide, Oxygen, Ozone, and Hydrogen peroxide
Contents

1. Your K 100 ... 4
 1.1 General and Safety instructions ... 5
 1.2 Application ... 6
 1.3 Intended use .. 6
 1.4 Features ... 7
 1.5 Technical data .. 8
 1.6 Declaration of conformity .. 9

2. Instructions for installation and connections ... 10
 2.1 Dimensions .. 11
 2.2 Installation K 100 ... 12
 2.3 Installation K 100 W ... 13
 2.4 Installation of ASR module (instruments W only) 14
 2.5 Installation of the RS module (instruments W only) 15
 2.6 Connection diagram K 100 ... 16
 2.7 Connection diagram K 100 W ... 17

3. Operation of the instrument... 18
 3.1 How to adjust parameters ... 19
 3.2 Where to look for information .. 20
 3.3 Menu overview .. 21

4. Code and language .. 22

5. Adjustment of the meter .. 23
 5.1 Calibration .. 24
 5.2 Temperature compensation .. 25
 5.3 Automatic sensor cleaning ASR (option) ... 26

6. Adjustment of the controller .. 27
 6.1 ON/OFF controller .. 28
 6.2 P / PI controller as impulse-frequency controller 29
 6.3 P / PI controller as pulse-pause controller ... 30
 6.4 Activation and deactivation of the controller ... 31
 6.5 Turn-on delay ... 31
 6.6 External controller stop (digital input) ... 31
 6.7 Manual operation of the relays ... 32
 6.8 Dosage check .. 33

7. Data output .. 34
 7.1 Current output .. 34
 7.2 Current output as controller output ... 34
 7.3 Serial interface RS485 (option) ... 34

8. Limit values and Alarm ... 35
 8.1 Alarm ... 36
 8.2 Configuration of the alarm relay .. 37
 8.3 Error messages ... 38

9. Operation and maintenance .. 39

10. Service .. 41

Index ... 42

Customer settings - for reference! ... 44
1. Your K 100

Is an instrument by Dr. A. Kuntze GmbH which offers high quality and reliability for years.

It is one of our economy series K 100 with which we are trying to meet the rising demand for low cost / high end instrumentation.

The K 100 instruments are defined by an excellent value for money. They were developed to maximize functionality on standard applications.

Operation requirements are reduced to an absolute minimum: The instrument is delivered ready-to-use with a pre-adjusted working potential suitable for your measurement. It is even pre-calibrated, so you will receive approximate measured values immediately after installation. Single-point calibration is used to determine the electrode’s response characteristic.

K 100 instruments can be equipped, even at a later date, with the Automatic Cleaning function ASR. The patented electrochemical cleaning function prevents coatings of lime, rust, or grease, and drastically reduces maintenance requirements.

All K 100 instruments have an integrated controller which provides bidirectional PI control, via two relays or as a steady-state controller via the analog output. You can define a turn-on delay to prevent incorrect dosage after power failure and operate the controller by remote control. Connect a level sensor, and the fail-safe will shut down the controller automatically in a low water situation. Activate the dosage check function to get an alarm if dosage achieves no results, indicating damages in the feeding lines.

You can configure the alarm relay as NO or NC contact, so that power failure gives an alarm, too, and as pulse contact instead of permanent contact, to fit all kinds of subsequent security systems. Furthermore, input errors and low water are now indicated via analog output in addition to the relay/display indication.

Let’s not forget the alarm function with minimum and maximum limit and turn-on delay...

You have certainly made a good choice. On the following pages you learn more about your K 100. If, however, you have further questions or are looking for information not included in this manual or if you are interested in supplementing products like sensors or flow cells or in our other instrument series, just give us a call - we will be delighted to help you!
1.1 General and Safety instructions

This manual applies to the following instruments:

<table>
<thead>
<tr>
<th>Instrument and type</th>
<th>Revision date</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 100 Cl₂, K 100 W Cl₂</td>
<td>12/10</td>
</tr>
<tr>
<td>K 100 SCl₂, K 100 W SCl₂</td>
<td>12/10</td>
</tr>
<tr>
<td>K 100 ClO₂, K 100 W ClO₂</td>
<td>12/10</td>
</tr>
<tr>
<td>K 100 O₂, K 100 W O₂</td>
<td>12/10</td>
</tr>
<tr>
<td>K 100 O₃, K 100 W O₃</td>
<td>12/10</td>
</tr>
<tr>
<td>K 100 H₂O₂, K 100 W H₂O₂</td>
<td>12/10</td>
</tr>
</tbody>
</table>

It contains technical information for the installation, start-up and maintenance. If you have any questions not included in this manual please contact your supplier or the official representative of Dr. A. Kuntze GmbH in your country.

We would like to point out that the warranties specified in our general trading conditions are valid only if:

- installation, connections, adjustments, start-up, and maintenance of the instrument are carried out by authorized personnel with adequate qualification.
- the instrument is used according to the description in this manual.

Please check for damages immediately after receiving the instruments and report any damages within 24 hours to the delivering company. Never work with a damaged instrument.

Keep this manual at a safe place where you can always look up the safety instructions and the information on handling and usage. According to DIN 61010 the manual is part of the product and must be maintained as long as the instrument is used, and given to the next owner if the instrument is sold.

This instrument was designed and built according to the safety measurements for electronic devices and has left our company in perfect working condition. To preserve this condition and to ensure safe usage follow all instructions carefully and pay special attention to all warnings issued in this manual. If the instrument is visibly damaged or has been stored inappropriately or if there are any doubts concerning safe usage, shut it down and make sure it cannot be restarted by accident.

You will notice that important safety instructions are highlighted:

CAUTION highlights instructions for the protection of people. Disregarding these instructions may cause accidents and injuries!

ATTENTION highlights instructions for the protection of the instrument and the equipment. Disregarding these instructions may lead to damage or destruction of the instrument or equipment!

NOTE is used to highlight interesting details.
1.2 Application

The instruments K 100 Cl2 and K 100 W Cl2 can be used to measure the concentration of free Chlorine in water. The other instruments measure the concentrations of their specific parameters. All have an integrated controller with two set points. With this you can control actuators such as dosing pumps or valves to add chemicals until the desired concentration is reached and maintained.

Applications are detoxication of industrial waste water, water treatment, and disinfection.

While the controller is set to Automatic, it controls independently the dosing of possibly hazardous chemicals, according to the measured values.

For safety measures, both the measurement and the calibration are checked for failure. Failures are indicated in the display and via the alarm relay, which can set off a horn or lamp or relate to a central control. If that failure makes control unreliable, the controller is automatically switched off until the failure has been taken care of.

CAUTION The instrument checks the input signals, the calibration results, and the water flow, if a flow sensor is connected. It cannot detect erroneous settings or failures in the treatment system, nor can it check for plausibility! The safety of the system of which the instrument is part of, lies within the reach of responsibility of whoever built the system.

1.3 Intended use

Use these instruments only for the monitoring and control of water.

Use only sensors, fittings, and accessories of Dr. A. Kuntze, since instruments and sensors are attuned.

Ensure that the required measuring conditions are constantly maintained, such as flow, pressure, temperature, etc.

Set-up the instrument according to this manual. Carry out all the steps described, and check all measurements and settings before you activate the controller.

Use all available safety measures such as the alarm relay, the dosage check, and the lack-of-water indication.

Regularly check that all safety measures are in good working order.

CAUTION The protection built into the instrument is impaired if they are not used as intended!
1.4 Features

Meter

<table>
<thead>
<tr>
<th>Measuring range</th>
<th>Substance</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 4.00 mg/l</td>
<td>Cl₂, free Chlorine</td>
<td>(K 100 (W) Cl₂)</td>
</tr>
<tr>
<td>0.00 - 10.00 mg/l</td>
<td>TC₁₂, total chlorine</td>
<td>(K 100 (W) SC₁₂)</td>
</tr>
<tr>
<td>0.00 - 4.00 mg/l</td>
<td>ClO₂, Chlorine dioxide</td>
<td>(K 100 (W) ClO₂)</td>
</tr>
<tr>
<td>0.0 - 20.0 mg/l</td>
<td>O₂, Oxygen</td>
<td>(K 100 (W) O₂)</td>
</tr>
<tr>
<td>0.00 - 4.00 mg/l</td>
<td>O₃, Ozone</td>
<td>(K 100 (W) O₃)</td>
</tr>
<tr>
<td>0.00 - 30.00 mg/l</td>
<td>H₂O₂, Hydrogen peroxide</td>
<td>(K 100 (W) H₂O₂)</td>
</tr>
</tbody>
</table>

-30.0 - 140.0 °C

Display
- Measured value and temperature with dimension
- Status display sensor, calibration, controller & alarm

Temperature compensation
- Manual or automatic with Pt100 (NTC for O₂)

Calibration
- 1-point calibration; for Oxygen measurements in air

Averaging
- Can be activated and deactivated via menu

Automatic Sensor cleaning (option)
- Automatically recognised when connected

Controller

Set points
- 2 set points with adjustable direction

Controller types
- ON/OFF controller with hysteresis
- P controller as Pulse-Pause-, Impulse-Frequency- or steady controller
- PI controller as Pulse-Pause-, Impulse-Frequency- or steady controller

Hysteresis
- Adjustable within the measuring range

P range Xₚ
- Adjustable within the measuring range

Integral time Tᵢ
- 0 - 2000 sec.

Least pulse
- 0.1 - 9.9 sec.

Pulse+Pause time
- 02 - 99 sec.

Impulse frequency
- 100 - 7200 pulses/h

Turn-on delay
- 0 - 200 sec.

Dosage check
- 0 - 90 min

Alarm function
- Min. and max. limit and onset delay

Connections

Relays
- 3 potential-free contacts (2x controller, 1x alarm)
- 6 A, 250 V, max. 550 VA

Analog output
- 0/4-20 mA galvanically isolated, max. loading 500 Ohm

Analog inputs
- 1 measuring input for Cl₂, TC₁₂, ClO₂, O₂, O₃, or H₂O₂
- 1 measuring input for temperature sensor

Digital input
- External controller stop or low water indication
- NC or NO selectable via menu

Serial interface
- RS485; Baud rate 9600, data format 8Bit,
- 1 start and 1 stop bit, no parity
1.5 Technical data

<table>
<thead>
<tr>
<th>Feature</th>
<th>K 100</th>
<th>K 100 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>panel-type housing</td>
<td>wall-mounting housing</td>
</tr>
<tr>
<td>Dimensions</td>
<td>96 x 96 x 135 mm (WxHxD)</td>
<td>165 x 160 x 85 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.8 kg</td>
<td>1.0 kg</td>
</tr>
<tr>
<td>Terminals</td>
<td>screw terminals for cables up to 1.5mm²</td>
<td>spring-loaded terminals for cables up to 1.5mm²</td>
</tr>
<tr>
<td>Protection class</td>
<td>Front IP54</td>
<td>IP65</td>
</tr>
<tr>
<td>Power supply</td>
<td>230 V +6/-10%, 40..60 Hz, optionally 117 V or 24 V</td>
<td>230V: 63mA HRC 117V: 125mA HRC 24V: 800mA NRC</td>
</tr>
<tr>
<td>internal fuse</td>
<td>none</td>
<td>230V: 63mA HRC 117V: 125mA HRC 24V: 800mA NRC</td>
</tr>
<tr>
<td>Power consumption</td>
<td>10VA</td>
<td></td>
</tr>
<tr>
<td>Contact rating</td>
<td>6 A/ 250 V, max. 550 VA resistive load (with RC protective circuit)</td>
<td></td>
</tr>
<tr>
<td>Operation temperature</td>
<td>0 - 50°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20 - +65°C</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>max. 90% at 40°C non condensing</td>
<td></td>
</tr>
</tbody>
</table>
1.6 Declaration of conformity

EC Declaration of Conformity

Dr. A. Kuntze
Gutes Wasser mit System

40668 Meerbusch-Lank
Robert-Bosch-Str. 14
Tel. (02 158) 70 66-0, Fax (02 159) 70 66-6
E-mail: info@kuntze.com www.kuntze.com

ISO 9001

Hereby we declare that our instruments:

K 100

are in conformity with the following directives:
2004/108/EC – Electromagnetic Compatibility directive (EMC)
2006/95/EC – Low voltage directive (LVD)

As long as the instructions for installation and set-up are observed.

The CE label was affixed in accordance with the technical harmonisation directive 2004/108/EC of the European Council dating from 15.12.2004.

Applied standards:
- EN 61000-6-1(3), VDE 0839 Part 6-1(3): 2002 (residential environment)
- EN 61000-6-2(4), VDE 0839 Part 6-2(4): 2005 (industrial environment)
- EN 61326-1: 2006, VDE 0843-20-1: 2006 Electrical equipment for measurement, control and laboratory use- EMC requirements
- EN 61010-1: 2002-08 Safety requirements for electrical equipment for measurement, control, and laboratory use

Meerbusch, 07.04.2009

Dipl.-Ing. Christoph Scheffold
Managing Director

K 100 (W) Cl₂, SCl₂, ClO₂, O₂, O₃, H₂O₂
2. Instructions for installation and connections

Installation:
On the next pages you will find detailed instructions for the installation.
For panel-type meters you have to prepare an opening of 92x92mm. Install the instrument and fix it with the two mounting clips which were part of the delivery.
You can install instruments in wall-mounting housings either by hanging them upon the center slot or by sliding the slot under a screw, which is an alternative for limited space. Either way you have to fix it additionally with two screws.

ATTENTION Install the instrument in a place where it is not put under mechanical or chemical strain!

Mind the protection class:
K 100: Front IP54
K 100 W: IP65 (closed terminal cover)

Connections:
You will find detailed connection diagrams on the following pages.
Before connecting the power supply check the information on the instrument label!

ATTENTION Input, output and control lines must be installed separate from each other and separate from power lines!

For inputs and outputs use screened lines and connect the screen on one side only.
The potentiostatic measurement is interference-sensitive, especially when using membrane sensors. Use a special screened cable. Membran sensors are delivered complete with cable.
For the connection of temperature sensors use a low-resistance cable with a large diameter.
When using the relays, mind that with inductive loads, interference must be suppressed. If that is not possible, the relay must be protected at the terminal block in the K 100 by a resistance-capacitance filter or, in case of direct current, by a freewheeling diode.

<table>
<thead>
<tr>
<th>Current up to</th>
<th>Capacitor C</th>
<th>Resistance R</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mA</td>
<td>10 nF 260 V</td>
<td>390 Ohm 2 Watt</td>
</tr>
<tr>
<td>70 mA</td>
<td>47 nF 260 V</td>
<td>22 Ohm 2 Watt</td>
</tr>
<tr>
<td>150 mA</td>
<td>100 nF 260 V</td>
<td>47 Ohm 2 Watt</td>
</tr>
<tr>
<td>1,0 A</td>
<td>220 nF 260 V</td>
<td>47 Ohm 2 Watt</td>
</tr>
</tbody>
</table>
2.1 Dimensions

K 100

K 100 W
2.2 Installation K 100

Prepare an opening of 92 x 92 mm.

Install the instrument from the front side and fix it with the two mounting clips which were part of the delivery.

Screw tight until the instrument is fixed perfectly.
2.3 Installation K 100 W

Remove the terminal cover.

Drill three holes (max. M5) according to the drawing. Mind that there are two ways for installation: (1) You can hang the instrument upon the upper screw. In that case drill the upper hole 120mm above the lower two. (2) Or you can slip the fixture on the back of the instrument under the upper screw. In that case the upper hole has to be another 15mm higher.

Mount the instrument and fix it with the two lower screws. Close the terminal cover or start with the connections.
2.4 Installation of ASR module (instruments W only)

The Automatic Sensor Cleaning function ASR can be added later on, at least with instruments in wall-mounting housing (production date 1-2011 or later).

ATTENTION ASR cannot be used with membrane-covered sensors (TCI, Oxygen).

CAUTION Switch off the power supply before opening the instrument!

ATTENTION Make sure that the inside of the instrument does not get wet!

Remove the covers of the front screws, unscrew the screws, and open the front. Mind that the connection of the key pad does not come loose, or if it does, do not forget to replace it before closing the instrument.

The ASR board is installed on the left side of the instrument, directly above the terminals.

Attention: Instruments delivered without ASR board have protective covers over the two 2-pin connectors that have to be removed before installation of the board.

Install the board with its 6-pin plug over the 6-pin socket of the instrument and its two 2-pin sockets over the two 2-pin plugs of the instrument. Mind that the pins are not broken or bent during the installation and that the boards sit properly.

This is how it looks with the board in place.

Before closing the instrument, make sure that the 6-pin connection to the front’s key pad is securely in place.

Close the front, fix it with the screws, and replace the screw covers.
2.5 Installation of the RS module (instruments W only)

The serial interface can be added later on, at least with instruments in wall-mounting housing (production date 1-2011 or later).

CAUTION Switch off the power supply before opening the instrument!

ATTENTION Make sure that the inside of the instrument does not get wet!

Remove the covers of the front screws, unscrew the screws, and open the front. Mind that the connection of the key pad does not come loose, or if it does, do not forget to replace it before closing the instrument.

The RS board is installed on the left side of the instrument, directly above the terminals.

Install the board with its 10-pin socket over the 10-pin plug of the instrument. Mind that the pins are not broken or bent during the installation and that the boards sits properly.

The board is installed with the 10-pin connection on the right side and the board facing left. It sits at an angle to make room for the ASR board underneath.

This is how it looks with the RS board in place.

This is how it looks with both boards in place.

Before closing the instrument, make sure that the 6-pin connection to the front’s key pad is securely in place.

Close the front, fix it with the screws, and replace the screw covers.
2.6 Connection diagram K 100

<table>
<thead>
<tr>
<th>Connection</th>
<th>Terminals</th>
<th>Note</th>
</tr>
</thead>
</table>
| Cl₂/ClO₂/O₃ sensor or H₂O₂ sensor | 1 - 4 | 1 = Screen
2 = Measuring electrode = brown
3 = reference electrode = white
4 = counter electrode = blue |
| Oxygen sensor | 1 - 4 | 1 = free
2 = measuring electrode = core
3 + 4 together = counter electrode = brown |
| TCl sensor | 1 - 4 | 1 = reference = yellow
2 = measurement = green
3 = - 6 V = white
4 = + 6 V = brown |
| Pt100 / NTC | 5 + 6 | |
| Analog output | 9 + 10 | 9 = +, 10 = -, max. load 500 Ohm |
| Digital input | 11 + 12 | 11 = +, 12 = -, external controller stop
and / or low water indication |
| Relay 1 | 18 + 19 | |
| Relay 2 | 20 + 21 | |
| Relay 3 | 22 + 23 | Alarm relay |
| Power supply | 24 - 26 | Check information on instrument label! |
| RS485 (Option) | Sub-D | 3 = +, 8 = -
4/7 bridged activates terminating resistance |
2.7 Connection diagram K 100 W

Connection terminals

<table>
<thead>
<tr>
<th>Connection</th>
<th>terminals</th>
<th>Note</th>
</tr>
</thead>
</table>
| Cl2/ClO2/O3 sensor or H2O2 sensor | 1 - 4 | 1 = Screen
2 = Measuring electrode = brown
3 = Reference electrode = white
4 = Counter electrode = blue |
| Oxygen sensor | 1 - 4 | 1 = free
2 = measuring electrode = core
3 + 4 together = counter electrode = brown |
| TCl sensor | 1 - 4 | 1 = reference/GND = yellow
2 = Measuring signal = green
3 = - 6 V = white
4 = + 6 V = brown |
| Pt100 / NTC | 6 + 7 | |
| Display-Kontrast | Display | Potentiometer to adjust brightness |
| Analog output | 11 + 12 | 11 = +, 12 = -, max. load 500 Ohm |
| Relay 1 | 14 + 15 | |
| Relay 2 | 16 + 17 | |
| Relay 3 | 18 + 19 | Alarm-Relais |
| Power supply | 20 - 22 | Check information on instrument label! |
| RS485 (Option) | 23 + 24 | 23 = -, 24 = +
Jumper A activates terminating resistance |
| Digital input | 26 - 28 | 26 = +, 27 = -, external controller stop and / or low water indication
28 = +24 V DC for inductive flow sensors |
3. Operation of the instrument

When turned on the instrument shows the measured value and temperature together with the controller mode (Man) and the status of the relays S1 and S2 (both OFF).

With five membrane keys you can move within the menu:
- With key ▼ you enter the main menu.
- With keys ▲ and ▼ you move up and down in the menu.
- With key ◄ you address a menu or parameter.
- With key ◄ you leave a menu or store a change.

For your convenience triangles in the display indicate the directions you can take from your position in the menu.

From the display of the measured values you can switch the controller ON and OFF with key ► in the order: AUTO ► HOLD ► MAN ► AUTO.

With key „M“ you get back to the display of the measured values from any point in the menu. Changes that have not been stored will be lost.

NOTE The instruments K 100 and K 100 W differ only in housing. Operation and menus are the same.
3.1 How to adjust parameters

Temporary Compensation

- Manual Compensation
- Automatic Compensation

1) When you address a parameter the actual setting is displayed.

2) Switch to the next alternative setting with key ▶.

3) When you have come to the last alternative, pressing the key once more will bring you back to the start.

Selection between alternatives

For many parameters you have the choice between two or more alternatives, e.g. between manual and automatic temperature compensation. For these parameters you need only key ▶. Switch from one alternative to the next until you either come back to where you started or until you reach the alternative you were looking for.

With these parameters any changes are immediately valid - there is no need to store the change.

Adjustment of numerical parameters

Numerical parameters can only be altered when a double triangle is visible behind the number. This double triangle appears when you address the parameter with key ▶.

Adjust the parameter with keys ▲ and ▼. A short pressure on the key changes the last decimal by 1. If you keep the key pressed, the value will continue changing until the pressure is released.

Store the changes with key ◄. The double triangle disappears.

NOTE: If you do not want to store the change, press key „M“ instead of key ◄.
3.2 Where to look for information

Main display
Enter the menu with key ▼.

Information is in chapter:
Adjustment of the meter - calibration
Adjustment of the meter - temperature compensation
Code and language
Adjustment of the controller - ON/OFF, P/PI controller
Limit values and alarm

Main menu
Calibrate
Temp. Comp.
Enter password
Set points
Limit values

Basic settings
Cal. Pt/NTC
Contr. settings
Start delay
Analog output
Language
Bus adress
Averaging
Temp. coeff.
Cleaning
Dig. input
Alarm relay

Information is in chapter:
Adjustment of the meter - temperature compensation
Adjustment of the controller - ON/OFF, P/PI controller
Adjustment of the controller - activation and deactivation
Data output
Code and language
Data output
Adjustment of the meter - averaging
Adjustment of the meter - temperature compensation
Adjustment of the meter - automatic Sensor cleaning
Adjustment of the controller - activation and deactivation

Limit values and alarm

Main menu and basic settings

The parameters are sorted into two menus: In the main menu you will find all functions which are used regularly, such as calibration. The menu basic settings contains all parameters which are set just once during start-up.

On the following pages you will find information on how to adjust parameters and which parameters you need for which application, in the following order:

1) General adjustments: password and language

2) Adjustments for measurement: calibration, temperature compensation, averaging, flow, and cleaning (option)
3.3 Menu overview

Press key ▼ to enter the menu.

- **Main menu**
 - Calibrate
 - Temp. comp.
 - Enter password
 - Set points
 - Limit values
 - Basic settings
 - Service

- **Calibrate**
 - DPD calibration
 - 0.48 mg/l
 - Slope 025 mV

- **Temp. comp.**
 - Temperature 25.0 °C

- **Enter password**
 - 056 Code

- **Set points**
 - Set point S1
 - 1.50 mg/l
 - P range S1
 - 0.20 mg/l
 - Integral time S1
 - 000 sec.
 - Set point S2
 - P range S2
 - Integral time S2

- **Limit values**
 - Limit S1
 - 1.00 mg/l
 - Limit S2
 - 0.30 mg/l
 - Start delay
 - 005 sec.
 - Control. mode
 - Auto+Man

- **Basic settings**
 - Cal Pt/NTC
 - 0.0 °C
 - Contr. settings
 - Start delay
 - Analog output
 - Language
 - Bus adress
 - Averaging
 - Temp. coeff.
 - Cleaning
 - Dig. input
 - Alarm relay

- **Service**
 - Product info
 - Unit no.
 - Nr. 041
 - Software date
 - M/Y 1.00
 - Product. date
 - M/Y 1.00
 - Analog inputs
 - input 1
 - 003 mV
 - input 2
 - 25.0°C
 - Clear memory
 - Press 4 & ▼

- **Alarm relay**
 - Normally open
 - Pulse contact
 - with ext. contr.
4. Code and language

Enter password

To get access to the various parameters you have to enter the correct password:

Code 11 gives access to the parameters „calibration”, „temperature compensation”, and „set points”.

Code 86 gives access to all parameters and functions.

With any other number it is impossible to select, view or change any parameter.

Language

For the communication with the instrument you can choose from a variety of languages.

Since choosing a language is part of the basic settings, it requires code 86. If a different code is set, you will be asked to enter the correct password.
5. Adjustment of the meter

Potentiostatic measurements require a 1-point calibration:

Since the measurement depends upon the flow-rate and calibration solutions would
not be stable anyway, the sensor cannot be taken out of the armature for calibration, as
is done with pH sensors. Instead the actual concentration of the test water is
determined by an alternative method, for example photometrically with DPD, and this
value is entered as calibration value. Calibration of the Oxygen measurement is
simpler, using the Oxygen concentration of the ambient air.

The measurement is influenced by temperature. This influence can be compensated
manually or automatically. For manual compensation the temperature is entered
manually, for automatic compensation temperature has to be measured with a
temperature sensor. For the temperature compensation a linear coefficient can be
adjusted as %/K.

For smoother measured values activate the averaging function.

If you have purchased an instrument with Automatic Sensor Cleaning ASR, the basic
settings will include „cleaning“ where you can activate the automatic cleaning, define
the interval between subsequent cleaning cycles and the time for the first cleaning
cycle.

NOTE The menu „cleaning“ appears automatically when an ASR-board is
installed.
5.1 Calibration

Calibration of the measurement of Cl₂, TCl₂, ClO₂, O₂, and H₂O₂

1) Set the controller to MAN or HOLD: MAN stops the controller, all other functions are still active. HOLD stops the controller, all outputs are frozen to the last value and the alarm relay is deactivated. Take a sample of the test water flowing out of the armature and determine the concentration by photometric DPD measurement or a similar reference method.

2) Enter the determined concentration and calibrate by pressing keys ➤ and ◀: Start with key ➤ and then - while still applying pressure on this key - additionally press key ◀.

3) Check the displayed slope before switching on the controller.

Zero-point correction

If you set the DPD value to 0.00mg/l, the calibration is interpreted as zero-point correction, and the instruments subtracts this value from all subsequent measurements. However, zero-point correction is only advisable if Analog input 1 in the service menu differs noticeably from zero in disinfectant-free water.

Calibration of the Oxygen measurement

The Oxygen measurement is calibrated in water-saturated air.

1) Switch off the controller. Take the sensor out of the armature, dry the sensor tip carefully with a napkin, hold it in the air above water with the membrane pointing down and wait until the reading is stable.

2) Calibrate by pressing keys ◀ and ▼: Start with key ◀ and then - while still applying pressure on this key - additionally press key ▼.

3) Check the displayed slope, put the sensor back in the armature, wait until the reading is stable, then switch the controller on again.

NOTE The Oxygen measurement strongly depends on temperature. Make sure that automatic calibration is selected during calibration.
5.2 Temperature compensation

Choose between manual and automatic temperature compensation.

Mind that for automatic compensation the temperature sensor should measure the temperature in the vicinity of the sensor. If temperature sensor and potentiostatic sensor are not immersed in the same solution, better switch to manual compensation. Enter the temperature manually. The instrument will then compensate the temperature effect of this temperature.

Temperature coefficient

With the temperature coefficient you can adjust the degree of compensation. The coefficient is given as %/K. For example, with a coefficient of 2%/K two percent of the measured value are subtracted per degree of temperature above 25°C.

Calibration of the temperature measurement

Since the temperature sensor is connected with a twin-core cable, slight deviations might occur between measured and real temperature. These deviations can be eliminated by calibration.

During start-up, measure the temperature manually and enter a correction term so that the display shows the exact temperature.
5.3 Automatic sensor cleaning ASR (option)

The patented Automatic Sensor Cleaning ASR prevents staining and passivating coatings and keeps the surface of metal sensors clean throughout the measurement.

The cleaning is an electrochemical one: in adjustable intervals the instrument applies a strong voltage to the electrode to produce Hydrogen and Oxygen from the surrounding water. This method needs no addition of chemicals.

The cleaning process takes about 30 seconds. During this time measurement is not possible, and after cleaning the sensor needs some time for polarisation. Therefore the display and the analog output will show the last measured value for five minutes, and the message „cleaning in progress“ is displayed. As a safety measure, attempts to calibrate within these five minutes are ignored.

Activation and timing

The cleaning is activated by setting the cleaning function from „deactivated“ to 1/day (every 24h), 2/day (every 12 h), every 3 days, or every week. The first cleaning starts as soon as the function is activated, and subsequent cleanings are carried out after 24h, or 12h, or the specified period of days.

The start delay allows to select a more convenient cleaning time, e.g. in the night. After activation the cleaning is delayed by the set time.

NOTE Whenever the instrument indicates „ext. contr. stop““ cleaning is not carried out.

Since during ASR no measurement is carried out, the controller is shut off until reliable measured values are available again. For applications in open systems, where this shut-down will lead to an intolerable loss of disinfectant concentration, you can select a base-load dosing - during ASR the instrument will continue dosing with the average controller output of the last 30 minutes.

CAUTION This dosing is not controlled by measurements! Only use it if there is no risk of overdosing!

NOTE When using the base-load dosing, set the delay to min. 0.5h to get a reliable average.

NOTE Interval settings are updated only directly after the cleaning and after activation. If you change the interval between cycles, the new settings will be effective only after the next cleaning.
6. Adjustment of the controller

For any type of controller you have to enter one or two set points, and you have to tell the instrument whether these set points are reached by increasing or decreasing the measured value.

You can choose between three different controller versions:

ON/OFF controller

The ON/OFF controller switches ON if the measured value exceeds the set point and OFF if it drops back below it or vice versa. Dosage is always carried out with 100% (ON) or 0% (OFF). The parameter for an ON/OFF controller is the hysteresis.

P controller

The P controller or proportional controller reduces the dosage in the vicinity of the set point proportional to the control deviation. This is easily achieved if the analog output is used as steady control output. If the relays are used, the proportional reduction is achieved by either reducing the switch frequency (Impulse-frequency controller) or reducing the time within a given period of time in which the relay is ON (pulse-pause controller). The parameters for a P controller are the P range and the impulse-frequency or the pulse+pause time and the minimum pulse.

PI controller

The PI controller is a P controller with an additional I function. Adjustments and parameters are the same as for a P controller. Additionally the integral action time has to be adjusted which determines the I function. The I function eliminates the P controller’s disadvantage of a remaining steady-state deviation.
6.1 ON/OFF controller

For an ON/OFF controller you have to set the following parameters:

1) **Set points S1 and S2**

 Set point S1 refers to relay 1, set point S2 refers to relay 2.

2) **P range and integral action time for S1 and S2**

 For an ON/OFF controller set P range = 0 and integral time = 0.

3) **Acting direction for S1 and S2**

 Select „raise“ if the dosage raises the measured value.
 Select „lower“ if the dosage lowers the measured value.

4) **optionally a hysteresis**

 The hysteresis prevents fast switching in the vicinity of the set point. If hysteresis is activated (by setting a value > 0) the relay switches only when the set point is exceeded by half the hysteresis.
6.2 P / PI controller as impulse-frequency controller

For an impulse-frequency controller you have to set the following parameters:

1) set points S1 and S2
 S1 refers to relay 1, S2 refers to relay 2.

2) P range and integral action time for S1 and S2
 Adjust a P range > 0. For a P controller set integral time = 0, for a PI controller set an integral time > 0.

3) pulse-frequencies for S1 and S2
 Enter the maximum pulse-frequency that corresponds to 100% dosage.

4) the acting direction for S1 and S2
 Select „raise“ if the dosage raises the measured value.
 Select „lower“ if the dosage lowers the measured value.
6.3 P/PI controller as pulse-pause controller

For a pulse-pause controller you have to set the following parameters:

1) set points S1 and S2
 S1 refers to relay 1, S2 refers to relay 2.

2) P range and integral action time
 Adjust a P range > 0. For a P controller set integral time = 0, for a PI controller set an integral time > 0.

3) pulse-frequencies for S1 and S2
 Both frequencies must be set to 00, otherwise the controller will act as an impulse-frequency controller.

4) the acting direction for S1 and S2
 Select "raise" if the dosage raises the measured value.
 Select "lower" if the dosage lowers the measured value.

5) pulse+pause time
 Define a period of time during which the relay is proportionally to the control deviation ON (pulse) or OFF (pause), respectively.

6) least pulse time
 Set a minimum pulse time that the relay has to at least remain open to allow the actuator to react.
6.4 Activation and deactivation of the controller

You can activate and deactivate the controller without any menu. Press key ‣ to switch between manual operation (controller OFF) and automatic operation (controller ON). The actual operation mode is indicated in the display by MAN or AUTO.

WARNING Make sure that the controller is OFF when connecting dosing pumps or other actuators!

6.5 Turn-on delay

Set a delay time which has to pass before the controller is activated after start-up or power interrupt. This allows the measurement to settle and prevents inappropriate dosage of chemicals.

6.6 External controller stop (digital input)

You can activate or deactivate the controller with an external switch by using the digital input. This feature can also be used as low water indication. Just connect a level or flow sensor to the digital input. At works, the input is NO (normally open). You can switch to NC (normally closed) in the basic settings.

With selection NO, the controller stops whenever the digital input is closed, with NC, it stops whenever the input is opened.

As long as that is the case, the message "external controller stop" is displayed.
6.7 Manual operation of the relays

1) If the controller is ON, switch it OFF with key † .

 Instead of „Auto“ the display shows „Man“.

2) Switch to the operation mode of S1 with key † .

 The square to the left of S1 starts to flash.

3) Switch ON relay 1 with key † .

 The square to the left of S1 gets dark.

4) Switch OFF relay 1 again with key † .

 The square gets light.

5) Switch to the operation mode of S2 with key † .

 The square to the left of S2 starts to flash.

6) Switch ON relay 2 with key † .

 The square to the left of S2 gets dark.

7) Switch OFF relay 2 again with key † .

 The square gets light.

8) Leave the operation mode of relay 2 with key † .

 Both squares appear light, none flashes - You have left the operation mode.

For manual operation you need no menu.

With key † you switch OFF the controller.

With key † you switch between Manual operation <-> operation mode S1 <-> operation mode S2 <-> manual operation.

In the operation mode you can Switch ON and OFF the selected relay with key † .

A flashing square indicates that the relay is in operation mode.

A dark square indicates that the relay is switched ON.

A light square indicates that the relay is switched OFF.

WARNING If you switch ON a relay it stays ON until you switch it OFF again manually!
6.8 Dosage check

In the basic settings of the controller you can define, how long a controller is supposed to dose with 100% without raising alarm.

If the controller output is 100% for more than the specified time, this is interpreted as an indication of failure, and the instrument issues an alarm and deactivates the controller, thus stopping further dosage.

The dosage check is a safety catch to prevent hazardous chemicals to be set free in case of a defective dosing tube or tube connection.

NOTE In case of an alarm due to dosage check, only the controller concerned is deactivated.

NOTE If you set the dosage check time to 0 seconds, the dosage check function is deactivated.
7. Data output

7.1 Current output

You can read out the measured values as 0/4-20 mA signals via the current output. With the setting 4-20 mA the resolution is lower, but defective cable connections are immediately evident.

With the parameters Begin and End you define which part of the measuring range you want to read out.

7.2 Current output as controller output

Alternatively you can use the current output as steady-state controller output. In that case assign the current output to the correcting variables S1 bzw. S2 instead of the measured value. The output will be in % - 100% equalling 20mA - so you do not have to define start and end values.

7.3 Serial interface RS485 (option)

The instruments are available with serial interface RS485 by means of which they can be integrated in a data bus system. Via the interface, all settings, measured and control values as well as any error messages can be read out digitally.

Instruments with RS485 are automatically delivered with the leaflet „Information on the RS485“ which contains instructions on the communication and a complete list of the functions available via interface.
8. Limit values and Alarm

Main menu

Limit values

Limit values

Limit S1
1.00 mg/l

Limit S2
0.30 mg/l

Start delay
0.05 sec.

controller mode
Auto+Man

Relais 3 is switched ON if the measured value exceeds limit S1.

Relais 3 is switched ON if the measured value drops below limit S2.

The alarm is issued only if the cause of alarm remains longer than the delay time.

limit function active only when controller is ON, or also in manual mode

For the alarm, you can adjust two limits: limit 1 is an upper limit. If the measured value exceeds limit 1, an alarm is issued. Limit 2 is a lower limit. The alarm is issued if the measured value drops below limit 2.

In case of alarm the display shows the message „limit” 1 or 2, respectively, and relay 3 is switched ON. This relay can be used to activate an external horn or lamp.

You decide whether the limit function is active only when the controller is set on automatic mode, or whether it should also be active in the manual mode.

If you are worried that in the latter case an alarm is issued during maintenance, please note that we have added a HOLD function which enables the limit values and freezes the analog output just for such contingencies. For more information, see chapter 9 - Operation and maintenance.

Start delay

In some applications it happens regularly that the measured value exceeds a limit for a short period of time. To avoid having an alarm issued under these circumstances you can adjust a start delay which has to pass before an alarm is issued. If the start delay time is >0 then the alarm is issued only if the cause of alarm remains longer than the specified delay time.
8.1 Alarm

Additional to the limit function the instrument provides various check functions that raise alarm. In case of alarm, the alarm relay switches, undelayed, and the cause of alarm is indicated in the display.

If the cause of alarm is such that control is no longer possible or might even be dangerous, the controller is automatically deactivated until the alarm is switched off. Switching off the alarm is done automatically by the instrument as soon as the cause of alarm is eliminated.

Failures connected with the measurement - input errors and low water - also lead to a current output of 0mA (only when assigned to the measurement).

Sensor check during calibration

If a sensor gives unsatisfying results during calibration, an alarm is issued. The alarm is held until a new calibration shows satisfying sensor data. In case of calibration failure the controller is not deactivated, to enable you to continue the dosing or treatment process until a replacement sensor is at hand.

Sensor check during measurement

During measurement all measuring inputs are checked. If an analog input does not receive a correct signal, an alarm is issued, and the controller deactivated. Alarm and controller stop remain until the analog input receives correct signals again. In case of an input error, the current output is set to 0mA.

Low water

If you connect a flow sensor to the digital input, in a low water situation the flow monitor will issue an alarm. The alarm remains until the flow monitor shows that water is again available. During the alarm the controller is deactivated, and the current output set to 0mA. The alarm relay switches if you have selected this function.

Dosage control

If a controller output is 100% for longer than the defined dosage time, an alarm is issued, and the corresponding controller is deactivated. The alarm remains until the controller output drops below 100%. It can also be extinguished by setting the controller to manual mode.

CAUTION If your controller settings are such that the value of 100% cannot occur, e.g. because you have a set point of 0.3mg/l Chlorine and a P range of 0.6mg/l, so that the maximum output is 50%, this condition is never met! Make sure that dosage control is not made impossible by your settings before activating the controller!

<table>
<thead>
<tr>
<th>Cause of alarm</th>
<th>only active in AUTO mode</th>
<th>deactivates controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope error</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Error input 1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Error input 2 (T)</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Limit min/max</td>
<td>adjustable</td>
<td>no</td>
</tr>
<tr>
<td>Dosage check</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Low water</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
8.2 Configuration of the alarm relay

You decide whether the alarm relay should be a NO or NC contact. At works it is set to NO as it used to be. In the basic settings you can change to NC. In that case the relay is kept closed actively, so in case of power failure it opens, thus issuing an alarm.

You can also decide whether the relay should switch permanently during an alarm or whether it should only give a pulse. This allows independent acknowledgement of the alarm to shut off horns, for example. It also allows registration of subsequent alarms. At works the configuration is permanent contact, as it used to be.

Last not least you can decide whether the alarm relais switches if the digital input is closed (.ext. controller stop’). This is useful if you have connected a level or flow sensor to the digital input, because then the alarm relay will indicate low water situations.
8.3 Error messages

<table>
<thead>
<tr>
<th>Error message</th>
<th>Cause</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope error</td>
<td>The slope determined by calibration was lower than 20%.</td>
<td>Please check the sensor connection and cable, the flow, and the temperature sensor and settings. Repeat the calibration. If the error message remains, the sensor has to be cleaned, regenerated, or replaced. If the slope is 0mV or 500mV, please check the input signal in the service menu, and contact your supplier.</td>
</tr>
<tr>
<td>Error input 1</td>
<td>The measuring input receives no real signal.</td>
<td>Please check the connections, the cable and the sensor for signs of damage. This message also appears if the measuring range is exceeded to an extend as to overload the input.</td>
</tr>
<tr>
<td>Error input 2</td>
<td>The temperature input receives no real signal.</td>
<td>Please check the connections, the cable and the sensor for signs of damage. This message also appears if automatic temperature compensation was selected although no temperature sensor was used or the sensor did not correspond to the settings.</td>
</tr>
<tr>
<td>Limit 1 / 2</td>
<td>The measured value exceeded limit 1 (or dropped below limit 2, respectively).</td>
<td>Please check the dosing and readjust the control parameters, if necessary.</td>
</tr>
<tr>
<td>Dosage check 1 / 2</td>
<td>Controller 1 (or 2, resp.) gives out a 100% output for more than the defined period of time.</td>
<td>Please check the dosing, especially the feeding tubes and connections. Caution! Carefully check for leaking chemicals!</td>
</tr>
<tr>
<td>Ext. controller stop</td>
<td>The digital input has been short-circuited.</td>
<td>This only indicates the external controller stop. If, however, you have connected a level sensor, this message appears due to the „low water“ alarm.</td>
</tr>
<tr>
<td>Cleaning in progress</td>
<td>The Automatic Sensor Cleaning has started.</td>
<td>The message will disappear automatically when the cleaning process is finished. While it’s displayed, calibration is not possible.</td>
</tr>
</tbody>
</table>
9. Operation and maintenance

Display contrast

With instruments in wall-mounting enclosures the display contrast can be adjusted to the actual light conditions by means of a potentiometer. It is indicated in the connection diagram with the word „display“.

Cleaning

The front and the display should not get in touch with organic solutions such as methanol. Never let water get inside the instrument. We suggest to simply use a damp cloth for cleaning.

Exchange fuse

WARNING! Disconnect the power supply before opening the instrument!
ATTENTION Mind that the cable connections to the front are not damaged, broken or torn during the process!

Instruments in wall-mounting enclosures have an internal fuse which has to be replaced at need. You will find a spare fuse fixed to the inside of the terminal cover. Information on the fuse can be found in the chapter „Technical data“.

To exchange the fuse, open the front carefully. The fuse is located in the lower right hand side. It is kept in place by a Bayonet lock. Turn the lock to the left until the fuse pops up. Exchange it and fix the new fuse by turning the lock to the right. Put the front back on and fix it tightly.

Maintenance of the safety functions

Regularly check the alarm relay to make sure that in case of failure both the indication by the instrument and the recognition by the superior control (SPS etc.) work reliably.

You can set off the alarm for example by setting limit S1 to a value smaller than the current measured value.

NOTE Mind that perhaps an alarm delay has been set. Also remember to restore the original settings after the test!

Regularly check the function of the water level or flow sensor to make sure that in case of lack of water the sensor gives the signal that leads to the controller stop.

Simulate lack of water by briefly interrupting the water supply. This must lead to a switch of the level sensor or a decrease of the flow signal, and the message „ext. controller stop“ or „no water“ must appear in the display.
Maintenance of the measurement

NOTE: Select HOLD for maintenance. In that mode, the controller is OFF, the current output is frozen, and the limit values are deactivated. This allows maintenance without causing alarm in a central control unit. The HOLD mode is selected from the main display with key just as the modes AUTO and MAN.

Regularly clean the metallic surfaces of the electrodes with a common dish detergent. Rinse carefully with water afterwards. Or use the automatic sensor cleaning function ASR. Mind that the measurement will take some time to repolarise after cleaning.

For maintenance of membrane sensors please refer to the instructions in the sensor manual.

Recalibrate in regular intervals.

NOTE The instrument checks the calibration data and indicates, if a sensor has to be cleaned or replaced.

If you have to exchange a sensor, make sure that the replacement sensor is appropriate for your application and corresponds to the equipment used.

Mind that you have to calibrate whenever you change a sensor - or an instrument!

Regularly clean filters, flow sensors, and fittings.

Set-up

Follow the instructions of this manual. Carry out all steps described. Check both the measured values and the settings before you activate the controller.

Disposal:

For disposal please notice that the instrument contains electrolyte capacitors which have to be disposed separately.
10. Service

In this menu you will find information which is especially important for any inquiries, updates or problems.

Product info
These figures allow a precise identification of the instrument (hardware and software).

Analog inputs
Here you can see the raw data the instrument obtains from the sensors. They are not influenced by compensations or calibration and offer valuable information in case of problems with the measurement or the instrument.

If you have difficulties interpreting this data, send them to your supplier together with the instrument data - he will know what to do.

Erase settings (reset)
With this function you can erase all customer settings and restore the original at-works data.

The process takes some 30 seconds. When it is finished the display will show the measured value, and the controller will switch off.
Index

A
- Adjustment of the meter ... 23
- Alarm
 - Errors ... 36
 - Limit values .. 35
 - Power failure ... 37
- Analog output .. 34
- ASR (Automatic Sensor Cleaning) .. 26

B
- Bus adress .. 34

C
- Calibration .. 24
 - Slope error .. 38
- Cleaning ... 26
- Code .. 22
- Connection diagram K 100 W ... 17
- Connection diagram K100 .. 16
- Connections .. 10
- Controller
 - Acting direction .. 28
 - ON/OFF controller .. 27
 - P controller .. 27
 - PI controller ... 27
- Controller output .. 34
- Controller settings
 - Impulse-frequency controller .. 29
 - ON/OFF controller .. 28
 - Pulse-pause controller .. 30
- Current output ... 34

D
- Digital input .. 31
- Dimensions .. 11
- Display contrast .. 39
- Dosing control ... 33

E
- Erase settings .. 41
- Error messages ... 38
- External controller stop ... 31

F
- Fuse ... 39

H
- HOLD function ... 40
- Hysteresis .. 28
I
Impulse-frequency controller ... 29
Installation K 100 ... 12
Installation K 100 W ... 13
Interface ... 7

K
Keys ... 18

L
Language .. 22
Limit values ... 35
Location ... 8

M
Maintenance ... 39
Measuring ranges ... 7
Menu
Basic settings .. 20
Main menu ... 20
Menu overview .. 21

P
Parameter setting .. 19
Password ... 22
Product info .. 41
Protection class ... 8
Pulse contact ... 37

R
RC filter .. 10
Registration output .. 34
Relay
contact rating .. 8
Relays ... 7
Manual operation .. 32
Status of the relays ... 18

S
Sensor check ... 36
Serial interface .. 7
Service ... 41
Set points .. 27
Software version .. 5
Start delay
Alarm .. 35
Controller .. 31

T
Technical data .. 8
Customer settings - for reference!

Instrument:
- Identification / location: ...
- Type: .. Date of installation
- Instrument no... Software version

Measurement:
- \(\text{Cl}_2 \)
- \(\text{TCl}_2 \)
- \(\text{ClO}_2 \)
- \(\text{H}_2\text{O}_2 \)
- \(\text{O}_2 \)
- \(\text{O}_3 \)
- Averaging: \(\text{ON} \) \(\text{OFF} \)
- Cleaning: \(12\text{h} \) \(1/\text{day} \) \(\text{every 3 days} \) \(\text{every 7 days} \) \(\text{OFF} \)
- Delay:h \(\text{Base-load dosing} \)

Temperature compensation:
- Manual
- Automatic
- Temperature: °C
- Correction°C
- Temperature coefficient% / K

Current output:
- 0-20mA
- 4-20mA
- for: \(\text{Meas. value} \) \(\text{controller S1} \) \(\text{controller S2} \)
- Begin: ... End: ..

Controller:
- Controller S1
- Controller S2
- Direction: \(\text{raise} \) \(\text{lower} \)
- Set point: ..
- Hysteresys
- P range
- Integral timesec.
- Pulse pause timesec.
- Min. pulsesec.
- Pulse frequency*100 / h
- Dosage checkmin

Start delay:
- Delay timemin.

Alarm:
- Limit S1: ..
- Limit S2: ..
- Delay timemin.
- with ext. controller stop

Alarm output:
- NC\ NO
- Permanent contact
- Pulse contact
- with ext. controller stop

Digital input:
- Normally closed
- Normally open

Interface RS 485:
- Bus adress